Ma tête vieillit-elle plus vite que mes pieds ?
Question d'origine :
Paradoxe amusant : selon la théorie de la relativité générale, l'augmentation de la valeur du champ gravitationnel ralentit l'écoulement du temps. Cela signifie-t-il que ma tête vieillit plus vite que mes pieds qui sont soumis à une gravitation plus élevée, étant plus proche du centre de la Terre. Si c'est bien exact, quelle est la formule qui permet de calculer cette différence sur une vie ?
Réponse du Guichet

Un peu de de physique sérieusement amusante: oui votre tête vieillit plus vite que vos pieds !
Et on dit : merci Albert !
Bonjour,
Pour répondre de manière simple et rapide à votre question : effectivement votre tête vieillit plus vite que vos pieds.
La réponse à votre question est :
«[…]
En altitude, le temps s'écoule plus lentement
Pour faire simple, plus un objet est près de l'origine du champ gravitationnel (à savoir le centre de la planète), plus le temps se déroule lentement pour lui. Ainsi, le temps s'écoule donc plus lentement à mesure que l'on s'échappe de la gravité. Lorsque l'on est dans un jet à 10 000 mètres de haut, ou mieux, dans l'espace.
Toutefois, il faut souligner que cette différence est quasi insignifiante. Et pour l'heure aucun cas de petits vieux aux pieds de jeunots n’a été recensé. Grâce à une horloge atomique ultra-précise et toute récente, les scientifiques ont estimé qu'en 79 ans de vie terrestre, le visage était plus âgé que les pieds de 90 milliardièmes de seconde. […]»
Selon la rédaction de Maxi science.
Vous pourrez trouver d’autres démonstrations plus ou moins complexes via des articles issus de la presse généraliste telle Science et Avenir, des sites de vulgarisation scientifique comme Futura-science ou une vidéo proposée par le Palais de la Découverte.
Tous s’accordent sur le fait que ce différentiel, s’il peut apparaître négligeable à l’échelle humaine, se calcule grâce à une découverte qui a révolutionné les sciences physiques: la théorie de la relativité générale publiée par Albert Einstein en 1915. De cette théorie, découle l’équation qui devrait vous permettre de calculer ce delta entre le vieillissement entre votre tête et vos pieds. On l’appelle l’Equation d’Einstein qui est généralement écrite de la manière suivante :
|
«où Rμν est le tenseur de Ricci, R la courbure scalaire, gμν le tenseur métrique de signature (+,-,-,-), Λ la constante cosmologique, G la constante gravitationnelle (environ 6,6742.10-11 m³kg-1s-2), c la vitesse de la lumière (exactement 299 792 458 m.s-1), π le nombre pi et Tμν le tenseur énergie-impulsion.
L'équation de champ d'Einstein est une équation de tenseur reliant un ensemble de tenseurs symétrique 4 x 4. Elle est écrite en termes de composants. Chaque tenseur a 10 composants indépendants. Vue la liberté de choix relative aux coordonnées d'un espace-temps à 4 dimensions, on n'aboutit qu'à 6 équations indépendantes.
L'équation de champ d'Einstein est comprise comme une équation permettant de connaître le tenseur métrique gab, étant donnée une distribution de matière et d'énergie exprimée sous la forme d'un tenseur énergie-impulsion. Malgré son aspect simple, elle est en réalité relativement complexe, notamment du fait que le tenseur de Ricci et la coubure scalaire dépendent de la métrique.
Λ, la constante cosmologique, a été introduite par Einstein pour permettre des solutions statiques au modèle cosmologique issu de l'équation d'Einstein. Par la suite, il a qualifié cette introduction de "plus grande erreur de sa vie".
Si on considère que Λ = 0 (ce qu'Einstein a fini par admettre, mais qui est controversé aujourd'hui), il est possible d'écrire cette relation de manière plus compacte en définissant le tenseur d'Einstein
qui est un tenseur symétrique de rang 2 dépendant de la métrique. En travaillant en unité géométrique où G = c = 1, on a alors:
La partie de gauche représente la courbure de l'espace-temps telle qu'elle est déterminée par la métrique et l'expression de droite représente le contenu masse/énergie de l'espace temps. Cette équation peut alors être interprétée comme un ensemble d'équations décrivant comment la courbure de l'espace-temps est reliée au contenu masse/énergie de l'univers.
Ces équations, ainsi que l'équation de la géodésique, forment le cœur de la formulation mathématique de la relativité générale.
Il faut y ajouter une loi dynamique pour avoir une théorie complète. […] »
Source: Techno-science.net
Si cette équation peut apparaître très élégante, quoique difficilement compréhensible pour les non-initié.e.s, à priori, elle ne semble pas prendre en compte le paramètre de la durée.
Par contre, elle a une application extrêmement concrète dans notre vie moderne et connectée: le GPS !
Un film de science-fiction récent, catégorie hard-science, est aussi basé sur cette théorie : Interstellar de Christopher Nolan.
Enfin, si vous souhaitez approfondir la question, nous vous proposons une sélection de livres et DVD documentaires traitant du sujet :
«3 minutes pour comprendre les grandes théories d'Einstein» de Paul Parsons
«Comprendre Einstein en animant soi-même l'espace-temps» de Stéphane Durand
Les guides mangas : «Relativité restreinte et générale» de Masafumi Yamamoto, Keita Takatsu,Re Akino et Trend-pro
«Théorie de la relativité» adaptaté en manga par le Studio Banmikas
«Pr Albert présente : La relativité : même pas peur !» de Sheddad Kaid-Salah Ferron et Eduard Altarriba
«Sept brèves leçons de physique» de Carlo Rovelli
«Einstein et la théorie de la relativité : une histoire singulière» de Quentin Lazzarotto
«Interstellar» de Christopher Nolan
Pour aller plus loin :
Un podcast de l’émission «la tête au carré» sur France Inter: «Notre rapport au temps qui passe avec Carlo Rovelli»
Un podcast de l’émission «la méthode scientifique» sur France Culture: «Faut-il repenser la gravitation?»
En espérant avoir répondu à vos attentes,
Relativement votre.