Combien de réservoirs 500 m3 de carburant peuvent-ils remplir ?
Question d'origine :
Bonjour,
Lorsque je m’apprête à renseigner une station service manquante sur le site gouvernemental du prix des carburants, ce dernier m'avertit que "selon l'arrêté ministériel du 12 décembre 2006, la déclaration des prix pratiqués n'est obligatoire que pour tout gérant de point de vente de carburants ayant vendu au moins 500 mètre cube des carburants SP95, gazole, E85, GPLC, SP95-E10, SP98".
Étant simple utilisateur du site (et non pas gérant d'une station), je me demande quel est l'équivalence de 500 m3 en nombre de pleins moyens d'automobiles. Y a-t-il une grenouille matheuse qui saurait m'aider à me représenter cette quantité abstraite pour mon cerveau, SVP ?
Merci d'avance !
Réponse du Guichet

500 m3 c’est … beaucoup de "pleins" ! Vous verrez ci-dessous qu’un calcul simple vous permettra de connaître le nombre de pleins que l’on peut tirer de 500 m3, quel que soit la capacité moyenne retenue pour un réservoir d'essence de voiture.
Bonjour,
Nous n’avons pas trouvé d’indication sur le volume maximal moyen du réservoir d’essence des voitures du parc français.
Nous prendrons comme exemple pour le calcul notre véhicule, dont le réservoir d’essence a une capacité maximale de 50 litres.
Une recherche basique sur Internet (ou dans l’ouvrage cité à la fin de notre réponse) nous apprend qu’ 1 m3 équivaut à 1 000 litres.
Donc 500 m3 valent:
500 x 1 000 = 500 000 litres.
Nous aurions pu passer directement par un calculateur de conversion des unités de capacité pour obtenir cette dernière réponse, mais cela aurait été moins pédagogique.
Combien de «pleins» de 50 litres dans 500 m3 soit 500 000 litres ?
Une division nous donne la réponse :
500 000 l / 50 l = 10 000
Donc avec 500 m3 on peut remplir 10 000 réservoirs de voitures de 50 litres. En négligeant les pertes en évaporation à chaque remplissage de réservoir… ou les pertes par distraction (cela nous est tous arrivé;-).
Vous pouvez adapter notre calcul en choisissant une autre capacité maximale moyenne pour un réservoir d'essence.
Par ailleurs si ce petit exercice vous a donné envie de travailler un peu sur les conversions entre unités de capacité, nous vous proposons de lire les pages 160 à 163 de l’ouvrage :
Bescherelle école maths : Du CP au CM2 / Bénédicte Idiard, Yann Jambivel. Hatier, 2022.
Cordialement.